

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Approved for public release; further dissemination unlimited

UCRL-ID-145202

Accounting Data to Web
Interface Using PERL

Charlie Hargreaves
Lawrence Livermore National Laboratory (LLNL)

Livermore Computing – Data Storage Group
Livermore, CA 94550

August 13, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory under
Contract No. W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the

Office of Scientific and Technical

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Accounting Data to Web Interface
Using PERL

By Charlie Hargreaves
Computer Science Major

Lawrence Livermore National Laboratory (LLNL)
Livermore Computing – Data Storage Group

7000 East Avenue
Livermore, CA 94550

August 13, 2001

Table of Contents

Overview... 2
HPSS Accounting Report ... 3
The Master Script (run_acct_html)... 3
Database Scripts.. 4
HTML Scripts ... 5
CGI Scripts.. 8

The acctinfo.cgi Script .. 8
The Graphing CGI Scripts .. 16

Additional Scripts ... 17
Conclusion .. 17
Glossary .. 18
Bibliography ... 19

1

Overview

This document will explain the process to create a web interface for the accounting
information generated by the High Performance Storage Systems (HPSS) accounting
report feature. The accounting report contains useful data but it is not easily accessed in a
meaningful way. The accounting report is the only way to see summarized storage usage
information. The first step is to take the accounting data, make it meaningful and store
the modified data in persistent databases. The second step is to generate the various user
interfaces, HTML pages, that will be used to access the data. The third step is to transfer
all required files to the web server. The web pages pass parameters to Common Gateway
Interface (CGI) scripts that generate dynamic web pages and graphs. The end result is a
web page with specific information presented in text with or without graphs.

The accounting report has a specific format that allows the use of regular expressions to
verify if a line is storage data. Each storage data line is stored in a detailed database file
with a name that includes the run date. The detailed database is used to create a
summarized database file that also uses run date in its name. The summarized database is
used to create the group.html web page that includes a list of all storage users. Scripts that
query the database folder to build a list of available databases generate two additional
web pages. A master script that is run monthly as part of a cron job, after the accounting
report has completed, manages all of these individual scripts.

All scripts are written in the PERL programming language. Whenever possible data
manipulation scripts are written as filters. All scripts are written to be single source,
which means they will function properly on both the open and closed networks at LLNL.
The master script handles the command line inputs for all scripts, file transfers to the web
server and records run information in a log file. The rest of the scripts manipulate the
accounting data or use the files created to generate HTML pages. Each script will be
described in detail herein.

The following is a brief description of HPSS taken directly from an HPSS web site.
“HPSS is a major development project, which began in 1993 as a Cooperative Research
and Development Agreement (CRADA) between government and industry. The primary
objective of HPSS is to move very large data objects between high performance
computers, workstation clusters, and storage libraries at speeds many times faster than is
possible with today's software systems. For example, HPSS can manage parallel data
transfers from multiple network-connected disk arrays at rates greater than 1 Gbyte per
second, making it possible to access high definition digitized video in real time.” 1 The
HPSS accounting report is a canned report whose format is controlled by the HPSS
developers.

1 Reference web site http://www.sdsc.edu/hpss/hpss1.html

2

http://www.sdsc.edu/hpss/hpss1.html

HPSS Accounting Report

The HPSS accounting report file name is in the following format acct.yyyymmdd.tttttt2
with time military style. The report output has comments that are identified by a #
character at the beginning of the line. Every line that does not start with the # character is
accounting data. The data line columns are all numbers and there are two types of lines. If
the third column contains a zero (0) the line contains summary information in the
following order: Account Identification Number (AcctID), Class of Service (COS), (0),
Number of Accesses (# Accesses), Number of Files (#Files) and Total File Length
(Length COS) in a COS. This information is a snapshot taken at the time the accounting
report is executed. If the third column contains a non-zero value the line contains storage
usage information in the following order: AcctID, COS, SClass, # Accesses and Amount
of Data Transferred (Transferred). The Number of Accesses and Amount of Data
Transferred are reset each time the accounting report is executed.3 LLNL has set the
report variable “Storage Unit Size” to megabyte, which means that all numbers output on
the report are in megabytes.

There is a change in report format between HPSS revision 4.1 and revision 4.2. Revision
4.2 has an additional column on the left that contain Cross-Cell4 information. The Cross-
Cell number identifies the location of the account. The account could be a local registered
user or a non-local registered user that connects from one of the sites allowed storage
access. This change affects only the script that generates the detailed database. To handle
this I have written one script for revision 4.1 and one for revision 4.2. I could have made
one script for both versions but for efficiency reasons and the assumption that Cross-Cell
will continue to be used in future HPSS releases I decided to make two separate scripts.

The accounting report has been run for the past year so historical data will be included in
the databases. It is currently run monthly but in the past has been run daily. To
incorporate the data that was collected daily I wrote a script that summed the daily runs
into the equivalent of a monthly run. This script is described in the Additional Scripts
section.

The Master Script (run_acct_html)

The run_acct_html script manages the monthly run of all individual scripts. First it finds
out what host it is on, Raven and Toofast are the only allowed hosts. Directory paths are
set according to the host. It then locates the accounting report that has just been generated
by HPSS accounting. A variable is initialized with the run date that is parsed from the
accounting report name. The current date and time is sent to the log file acct.html.t that is
used records run status.

2 yyyy represents year, mm represents month, dd represents day and tttttt represents time.
3 Reference HPSS System Administration Guide Release 4.1.1, Revision 1 (June 1999).
4 Cross-Cell is the concept of accepting authentication credentials from non-local authentication domains.

3

The createdetailacctdb script is run with an overloaded standard input of the accounting
report, an overloaded standard output of acctdetaildb.yyyymmdd and an overloaded
standard error concatenating file acct.html.t. The createacctdb script is run with an
overloaded standard input of the acctdetaildb.yyyymmdd, an overloaded standard output
of acctdb.yyyymmdd and an overloaded standard error concatenating file acct.html.t. The
two databases, acctdetaildb.yyyymmdd and acctdb.yyyymmdd, that are queried by the
CGI script are now created locally.

There are three scripts called to generate the HTML pages. The createallaccthtml script is
run with an overloaded standard input of the acctdb.yyyymmdd, an overloaded standard
output of group.html and an overloaded standard error concatenating file acct.html.t. The
createaccthtml script is run with an overloaded standard output of individual.html and an
overloaded standard error concatenating file acct.html.t. The createtopusershtml script is
run with an overloaded standard output of topusers.html and an overloaded standard error
concatenating file acct.html.t. The HTML files are now created locally. Web page format
and contents are described in the HTML Scripts section.

All database files and HTML files are moved to a directory on the host that can be
accessed from a node with access to the web server. This directory is /home/host
name/admin/acct/ with host name being Raven or Toofast. Using Distributed Computing
Environment (DCE) keytab credentials a secure shell DCE login is made on a node that
has access to the web server file directory, Quail and Halffast are the allowed hosts. The
files are now moved into the web server accounting directory, /dfs/www/dsg/accounting/.
The path is the same from Quail and Halffast. An additional DCE login is used to set the
group to dsgweb on all files transferred. For all of these transactions standard error output
is concatenated to file acct.html.t.

Database Scripts
Databases for each month are stored on the web server for access by a CGI script. There
are two databases required to completely and expeditiously display the accounting data.
The first is a detailed database, file name acctdetaildb.yyyymmdd, that holds the same
data as the accounting report with the addition of user login and user full name. All
comments and white space are removed and columns are separated by the + character.
The + character was chosen because it is very unlikely to be used in a name or login. The
second database is the summary database, file name acctdb.yyyymmdd, that holds the
summarized storage information for each user. The summarized database is sorted by
storage space used in descending order to optimize the top users query. Although all of
this data could be obtained dynamically at run time it is stored in a file for efficiency
purposes.

The createdetailacctdb can only be run on Toofast09 or Reven17 nodes. The first step is
to build an array that holds user information for everyone with a DCE login. Although
this is a slow process it is the most complete and efficient solution. Next an associative
array is built with AcctID as the index and login and full name as the data members. The

4

accounting report is at standard in so now lines start to be read. The end-of-line character
is removed and the line is split into an array. All comments are ignored and any non-
comment line is checked for proper format using this regular expression:
/^\s*\d+\s+\d+\s+\d+\s+\d+\s+\d+\s*\d*\s*$/o5. Notice that this accepts both types of
lines. If the format is not correct the script dies with an error message. The first numbers
on a line are AcctID, which is used to access the login and full name in the associative
array. If no entry is found a warning message is sent to standard error, the field for login
is set to uid:AcctID_Unknown_login and the full name field is set to Unknown_name.
For summary line type the line is sent to standard out in the following format: login+full
name+AcctID+COS+0+# Accesses+# Files+Length COS. For storage usage lines the
format is: login+full name+AcctID+COS+S Class+# Accesses+Transferred. This
continues until the end-of-file is reached. The HPSS version 4.2 compatible script ignores
the cross-cell because all users have a local login. On the closed side this is not the case.
When running with HPSS version 4.2 on the closed side the cross-cell and AcctID will be
used to identify users.

The following is a sample of the data stored in the detailed database for one user:
chargrea+Charles M. Hargreaves+7155+1+0+8355+85381+13956126
chargrea+Charles M. Hargreaves+7155+1+1+8355+1289447
chargrea+Charles M. Hargreaves+7155+10+0+0+16436+12899
chargrea+Charles M. Hargreaves+7155+10+10+0+0
chargrea+Charles M. Hargreaves+7155+20+0+6518+90261+94825
chargrea+Charles M. Hargreaves+7155+20+10+6518+6231

The createacctdb can only be run on Toofast09 or Reven17 nodes. The detailed
accounting database is at standard input and lines start to be read. All comments are
ignored. The # files, transferred and length data is summed for each login over all COS
and stored in an associative array. This associative array is sent to standard output with a
descending sort on the length data member. The output format is as follows: login+full
name+# Files+Length COS+ Transferred. This continues until the end-of-file is reached.

The following is a sample of the data stored in the summary database for one user:
chargrea+Charles M. Hargreaves+192078+14063850+1295678

HTML Scripts
The HTML scripts are run monthly to update the information stored statically as web
pages. All HTML code is generated within these filter scripts. Each the web pages have
identical headers and footers that follow the same format as other Data Storage Group
web pages. The overall design of the pages maintain a similar look and user interface.
There is a static index page, index.html, that accesses the three pages created by the
HTML scripts. The three options for querying the databases are request storage
information for a single user, request storage information for a group of users and see a

5 ^$ are anchors, s is white space, d is digit and the o tells the compiler to compile the pattern only once

5

list of the top storage users. All of these web pages supply a CGI script, acctinfo.cgi, with
the proper information to generate a selection of data specified by the user.

The createaccthtml script creates the single user storage information query web page. The
web page has an HTML form that contains three sections that are arranged in a table with
action set to the acctinfo.cgi file6. The createaccthtml script builds a multiple select list of
dates from the databases available in the database directory with “All” selected. The
numerical date is converted to a test date, “mmm dd, yyyy” format with mmm in letters.
This is done in all HTML scripts. Radio buttons are built to select report type. The two
report types allowed are “Summary” and “Summary with Graphs”. Submit and reset
buttons are created along with some text and a text box. The text box accepts the login of
the user whose data is to be displayed. When submit is pushed the date(s), report type and
text box are passed to the CGI script with the proper parameter labels. (See figure 1)

Figure 1 - Individual User Accounting Report Selection

6 This assumes you know HTML and CGI.

6

The createallaccthtml script creates the group of users storage information query HTML
page. The web page has an HTML form that contains many sections that are arranged in
a table with action set to the acctinfo.cgi file. The createallaccthtml script builds a
multiple select list of dates from the databases available in the database directory with
“All” selected. Radio buttons are built to select report type. The three report types
allowed are “Summary”, “Detailed” and “Summary with Graphs”. Submit and reset
buttons are created along with some text. A table that holds all AcctID logins and full
names is build along with checkboxes for each entry. This table is populated with data
from the most recent summary database that is at the overloaded standard input. When
submit is pushed the date(s), report type and login(s) checked are passed to the CGI script
with the proper parameter labels. (See figure 2)

Figure 2 - Group of Users Accounting Report Selection

The createtopusershtml creates an HTML page that shows the top 10, 25, 50 or 100 users
in regards to storage space used or data transferred. The web page has an HTML form
that contains three sections that are arranged in a table with action set to the acctinfo.cgi

7

file. The createtopusershtml script builds a multiple select list of dates from the databases
available in the database directory with the most recent date selected. Only one date is
allowed to be selected because a summary of multiple months is not desired. Radio
buttons are built to select report type. The four report types allowed are “Storage
Summary”, “Storage Summary with Graphs”, “Transfer Summary” and “Transfer
Summary with Graphs”. Submit and reset buttons are created along with some text. A
pop-up select list is created with the number of top users to show. When submit is pushed
the date, report type and number of top users to show are passed to the CGI script with
the proper parameter labels. (See figure 3)

Figure 3 - Top Users Accounting Report Selection

CGI Scripts
The acctinfo.cgi Script

The acctinfo.cgi script is on the web server in directory /dfs/www/dsg/cgi-bin/. This
script is over 600 lines so I will only give a high level description of its functionality.
Detailed comments are in the script. It accepts parameters from any of the three web

8

pages, uses the parameters to access the specific information in the databases and sends
HTML code with the selected information to the requesters browser.

Acceptable scalar7 parameters passed in are login for single user information, namedetail
for login contact information, pageformat for type of report to run and topten for the top
users list. Acceptable array parameters passed in are usernames to see more than one
users information and dates to see information for more than one date.

Some special cases must be handled before any data is collected. If dates are equal to
“All” then the dates array is set to all databases dates available. The date format is
converted to all numbers so it can be used as an extension to access the accounting
databases. If only a login is passed, like from the individual user page, the full name for
that user is found in a database and both are added to the usernames array.

When pageformat is equal to “Detailed” the data from the detailed account database(s) is
collected for all dates specified in the dates array. This is done by opening each database
file using the date’s array and collecting all records in an associative array. The key for
the associative array is AcctID, COS and S Class. The process of opening each file once
is used to minimize file access delays. The values in the usernames array are used to
index the associative array and access the correct information. This information is
separated into two associative arrays, one for summary data and one for storage usage
data. Also added to both associative array data is HTML code for web presentation. The
key for both arrays is login, date, AcctID, COS and S Class. The name and date
inclusions in the key are used to sort the data when displayed. Both associative array data
collections are sent to standard output in name then descending date order (See Figure 4)

7 A scalar is a PERL variable data type.

9

Figure 4 – Detailed Account Information

When pageformat is equal to “Summary” the data from the summary account database(s)
is collected for all dates specified in the date’s array. This is done by opening each
summary database file using the date’s array and collecting the information in an
associative array. The key for the associative array is login. The values in the usernames
array are used to index the associative array and access the correct information. The
information is entered into a two-dimensional associative array indexed by login and date
with the second dimension containing the name of the data column pointing to the login
full name, number of files, space used or data transferred. Here is one line of the code
that is for full name: $userinfo{$uname[0].' '.$date}{fullname} = $temp[0];. $uname[0]
holds the login and $temp[0] holds the full name for the login. If there is no record in the
database all values are set to ‘0’. The username array and dates array are used, sorted, as
indexes to add HTML code around the values from the two-dimensional associative
array.

10

Figure 5 – Summary Account Information

When pageformat is equal to “SummaryGraphs” all the summary data is collected as
described in the previous paragraph. Before the data is sent to the browser a graph is
generated and sent. There are two types of summary graphs with both showing storage
used. If there is only one login to display the graph will plot all dates for that one user
(See figure 6). If more than one login is requested then the graph will display each users
data for the most recent date (See figure 7). I chose to stream the graph directly to the
browser instead of saving the image to disk and referencing it in HTML code. This
eliminates having to manage image files and deal with the images in the web server
cache. To do this an additional CGI script, plot_graph.cgi, is used. This is so the HTML
code can reference it as it would an image. All data to be displayed must be passed to
plot_graph.cgi. To pass the data it must be one continuous string of characters excluding
spaces. To do this I used the ‘_’ character to separate data and the ‘+’ to represent spaces.
Here is the HTML code: “” with
$graphlist pointing to the continuous string. I’ll explain plot_graph.cgi later but for now
trust me that it displays the data. On return from plotting the graph the summary data text
is displayed as in the previous paragraph.

11

Figure 6 – Single User Summary Account Information with Graphs

12

Figure 7 – Multiple User Summary Account Information with Graphs

If the topten parameter has a number the list of top users, up to the number in topten, is
displayed. The two sorts, both in descending order, available are by storage used or data
transferred. Since the summary database is ordered in descending order with regards to
data stored the list of top storage users is a simple sequential read from the database file.
In the data transferred sort the entire database file is entered in a hash and sorted by data

13

transferred. If pageformat is equal to “Summary” only the text storage usage data is sent
with HTML code. If pageformat is equal to “TopSummaryGraphs” a graph is included
before the text data (See figure 8). If pageformat is equal to "TransSummary" only the
text transfer data is sent with HTML code. If pageformat is equal to
"TransSummaryGraphs" a graph is included before the text data (See figure 9).

Figure 8 – Top Storage User Account Information with Graphs

14

Figure 9 – Top Transfer User Account Information with Graphs

If the namesdetail parameter is defined the user has asked for contact information for a
login. The login is used with the generisdce executable to load an array. The contact

15

information is pulled from the array and sent, with HTML code, to the standard output
(See figure 10)

Figure 10 – Account Contact Information

The Graphing CGI Scripts

There are two scripts used to send the graph to the browser. The two scripts are virtually
identical with the exception of the X and Y labels. A single scalar is accepted which
consists of a continuous word, no blanks. The ‘_’ character separates data and the ‘+’ to
represent spaces. Using the PERL split function data is parsed into an array. All ‘+’
characters are switched back to spaces. Arrays are created for the X and Y axis data and
they are loaded with the appropriate data. There is a variable for cycling the graph data
colors that is set to not cycle for single user data and to cycle for multiple user data. This
can be observed in the previous figures with graphs. The maximum Y data value is
acquired for scaling the Y axis. This maximum number is rounded up to the next 1000 or
gigabyte. This makes the Y axis scale look better. The graph parameters are set and the
graph is plotted. The image is sent to standard output, in this case the browser.

16

Additional Scripts
The sumdailyrpts script is used to convert daily runs of the HPSS accounting report to an
equivalent monthly report. This script is a filter. The following command will create a
summarized report for the individual reports in the directory: cat ./directory_with_files/* |
sumdailyrpts>acct.yyyymmdd.000000. All of the reports I have converted have the time
extension set to 000000. The script checks the input line format to decide if the line is
accounting data. An accounting data line is parsed with data to be summed. The most
recent file is used for the snapshot values and the file header. After all files are read the
sorted lines are sent to the standard output.

The rmfirstclmn script is used to remove the left-most column. This is used to convert an
HPSS version 4.2 accounting report to a version 4.1 report. Please note that this is only
usable when cross-cell is not being used. This script removes the cross-cell column.

The pmdesc.cgi script is an HTML wrapper for a PERL script that shows what PERL
modules is accessible. This identifies what modules are available to be used from a web
page. The script came from the www.perl.com web site.

Conclusion
The intent of this document was to give a high level definition of the script written. There
are additional comments in the scripts that provide a lower level description. If there is
need for any additional description contact me at hargreaves1@hotmail.com or
hargreaves1@llnl.gov.

17

http://www.perl.com/
mailto:hargreaves1@hotmail.com
mailto:hargreaves1@llnl.gov

Glossary
Associative Array - Also called a hash is like the array except the index values are not

small nonnegative integers, but instead are arbitrary scalars. These scalars (called
keys) are used to retrieve the values from the array.

Class of Service (COS) - Class of Service allows HPSS users to select a particular

service level based on the space and performance requirements of a file. Each
HPSS file will reside in a particular COS that is selected when the file is first
created.

Comments - Identified by the ‘#’ character are comment text that the compiler ignores.

Common Gateway Interface (GCI) - Is an interface PERL uses to generate dynamic web

pages. The CGI scripts I have written query databases, send HTML and stream
graphics.

Cron job – A script that resides on a cron server with a predetermined run time. The

cron server executes the cron job when the current time is equal to the run time.

Cross-Cell - The concept of accepting authentication credentials from non-local

authentication domains. Shows what site an account is connecting from.

Database - In this document it refers to a text file holding formatted data.

Filter – Here it refers to an executable program that accepts input data through the

standard input and sends the filtered data to the standard output.

HTML - HyperText Markup Language is the universal browser language.

PERL - A programming language optimized for scanning arbitrary text files,

extracting information from those text files, and printing reports based on that
information. It is a practical language.

Regular expression - A pattern or template to be matched against a string.

Scalar - The simplest kind of data that Perl manipulates. Either a number, like 4 or

3.25e20, or a string of characters.

Script – An executable file holding a series of commands or operations.

Storage Class (SClass) - HPSS storage classes define attributes for various virtual

volumes.

Storage Data – Accouning information for users.

18

19

Bibliography
Books:

Perl in a Nutshell
ISBN 1-56592-286-7
Copyright © 1999 O'Reilly & Associates

Learning Perl
ISBN 1-56592-284-0
Copyright © 1999 O'Reilly & Associates

Learning Perl on Win32 Systems
ISBN 1-56592-324-3
Copyright © 1999 O'Reilly & Associates

Programming Perl
ISBN 1-56592-149-6
Copyright © 1999 O'Reilly & Associates

Advanced Perl Programming
ISBN 1-56592-220-4
Copyright © 1999 O'Reilly & Associates

Perl Cookbook
ISBN 1-56592-243-3
Copyright © 1999 O'Reilly & Associates

HTML for Dummies
ISBN 0-7645-0248-4
Copyright © 1997 IDG Books Worldwide, Inc.

Web Sites:

http://www.sdsc.edu/hpss/hpss1.html

http://groups.google.com/googlegroups/deja_announcement.html

http://www.sdsc.edu/hpss/

http://stein.cshl.org/~lstein/

http://www.perldoc.com/

http://hpcf.nersc.gov/cgi-bin/storcharge/FY2001/repo_login?repo=mpccc/ccc

http://www.sdsc.edu/hpss/hpss1.html
http://groups.google.com/googlegroups/deja_announcement.html
http://www.sdsc.edu/hpss/
http://stein.cshl.org/~lstein/
http://www.perldoc.com/
http://hpcf.nersc.gov/cgi-bin/storcharge/FY2001/repo_login?repo=mpccc/ccc

	DISCLAIMER
	By Charlie Hargreaves
	Computer Science Major
	August 13, 2001

	Overview
	HPSS Accounting Report
	The Master Script (run_acct_html)
	Database Scripts
	HTML Scripts
	CGI Scripts
	The acctinfo.cgi Script
	
	Figure 5 – Summary Account Information
	�
	Figure 9 – Top Transfer User Account Information

	The Graphing CGI Scripts

	Additional Scripts
	Conclusion
	Glossary
	Bibliography

